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Abstract. The angle between past and future for stationary random fields

on the lattice points of the plane is defined and it is shown that in

contrast with other problems related to the past of random fields the

positivity of the angle between past and future is independent of different

: pasts which have been considered. Most of the known facts concerning the

angle for stochastic processes have been extended to the case of random

* fields.
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1. Introduction. Several authors have studied random fields on the lattice

points of the plane. Some of the important results in this field are included

in the work of Helson and Lowdenslager [2], where a generalization of Szeg6's

theorem to half-planes is proved; Chiang [1], where the regularity problem for

the half-planes is discussed; Kallianpur and Mandrekar [7], where a Wold-Halmos

decomposition Theorem is proved; Korezlioglu and Loubaton [8], where spectral

factorizations are considered, Soltani [15], dealing with regularity and

quarter-plane moving average representation; and Miamee [10], where an extension

of Szego's theorem for third quadrant is given. Another problem which has

been proved to be useful in the prediction theory of stationary stochastic

processes is the idea of the angle between past and future. Several authors

have worked on this area and revealed its connection with the prediction theory

of stationary stochastic processes. cf. Helson and Szegb [4], Hunt, Muckenhoupt

and Wheeden [5], Pousson [12], Sarason [14], Pourahmadi [11], and Miamee [9].

In this paper we introduce the definition of the angle for a stationary

random field and prove that the crucial properties of the angle in the case of

stationary processes have natural extensions to the case of stationary fields.

In contrast to other problems concerning the past of random fields, we show

that the positivity of the angle between past and future does not depend on

the choice of the kind of past one considers. Thus starting with

the usual half planes, this fact enables us to use the results of Helson and

Lowdenslagers proved for another kind of half-planes that they consider.

.. •-. . •. o ..... . *o-o -o ,- -•o°. . .. .-. -...- .,o-.-.o - . o.° i..i.- .' -. ,. •

.. .. .. . .. .. ....... "m d"P... ..... . ........... . . . . . . . . . . . . . ..
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2. Preliminaries. In this section we introduce the notations and terminologies

2
needed in the rest of the paper. Let Xmn, (m,n) - Z , be a double sequence of

random variables on a probability space (SI,B,P) such that

EXIM = 0 EIXmn12 < _, for all (m,n)EZ.

2
The double sequence Xmn, (m,n) E Z is called a stationary random field if
EX Xrs depends only on the differences m-r and n-s; i.e.

EX X = p(m-r,n-s).
mn rs

In this case the covariance function p(m,n) = EX X is a positive definite
mn oo

function on the group Z2 of lattice points of plane. It is known (cf. for

example Salehi and Scheidt [131) that there exists a non-negative measure P,

defined on the Borel sets of the torus

T = {a:.0 < a < in x {: 0 < 6 < 271

such that
(2.) pm~n e(m+nB)2

(2.1) P(mn) = e-mndp, for all (m,n) Z

This measure pJ is called the spectral measure of the stationary random field

Xmn. If 1J is absolutely continuous with respect to the normalized Lebesgue

measure do = dada its Radon-Nikodym derivative w is called the spectral42

density of the field.

L2 will denote the Hilbert space of all functions on the torus which are

square summable with respect to the measure u. From (2.1) it is clear that

the operator

X e-e1 (mo+n )

•"",

. . . . . .. . . . ..
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extends to an isomorphism from HX = the closed linear subspace generated by

2all X 's, onto L2 . This is called the Kolmogrov isomorphism between the time

domain and spectral domain.

For any subset M of Z2 we define H x(M) to be the closed linear subspace

of L 2(ir,6,P) = H,spanned by all X 's with (m,n) E M. The verticalm~n

past-present PV and the vertical future Fv of the field X is the subspace
x x Inn

H x(SV), and H x(Sv), respectively; where

S = {(m,n): m < 0, n e Z}.

As a measure of the angle between the vertical past-present and future

subspaces of the field X we take its vertical-cosine defined by

= F

= sup{I(YZ)I: Y . Z F' = x'=1°x xv z x' I l 1 1

and the subspaces Pv and Fv are said to be at positive angle if 0v <x x x
The horizontal past-present subspace Ph; the horizontal future subspace Fh

x x

and the horizontal-cosine of the angle between these subspaces Ph, are defined
x

similarly. Finally we define

v h
0x  = max (P xPxh

v h
For any nonnegative measure on the torus P, , hand p can be defined in the

same way. However, if p is the spectral measure of our stationary random field
v v h han

Xmn,then by the Kolmogrov isomorphism it is evident that pv = 0V h = 0 , and

Ox = P

. . . . . ... .. . .. . .. . . .
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3. Geometric Characterizations of pX < 1. In this section we present some

important geometric properties of stationary random fields Xmn with p < 1. These

include the generalizations of the known geometric characterizations concerning

the positivity of the angle between past-present and future of discrete time

stationary random processes. At the end of this section we give a set of

sufficient spectral conditions which guarantees the validity of the commutative

property (to be explained later) which has been used by several authors working

on the prediction theory of stationary random fields.

The proof of the following lemma is similar to the corresponding fact in

the case of univariate stationary processes and it is hence omitted (cf.

Helson and Szegb [4, p. 129]).

3.1 Lemma. Let Xrm be a stationary random field. In order for the angle

between the vertical past-present and vertical future to be positive it is

necessary and sufficient that there exists a constant N such that

(3.2) 11 7 aXmnXImn H < N j1 2 amnXmnIH

(m,n)ESv (m,n)EZ2

where {amn} is any double sequence of scalars with finitely many non-vanishing

elements.

A similar statement for the horizontal angle is also true. Combining

these two facts we get the following Lemma. Proof is again omitted.

3.3 Lemma. Let X be a stationary random field. Then the following statements

are equivalent

(i) Px <1

(ii) There exists a constant N such that

• . ., . o ° , • ° . • e - • - , I - ° ° I . , , ° . ° . , ° • . . . . . , . • . . . , . - • . ° . , ,



Iv N aX1M1H<_N11 2 a mnX mnlH
(m,n)4ESV (m,n)EZ2

and

11 h dmnXmni H  <Nil 1+ a X IIH,
(m,n)csh (m,n)Z2m

where {a m is as in Lenna 3.1. and Sh is defined similar to S

Now we can prove the following

3.4 Lemma. Let XMn be a stationary random field. Then p < 1 iff there

exists a constant M such that for any double sequence as in Lenmna 3.1 and any

integers mo, mi, n0, and n1 we have

I n1

(3.5) aX I !H !.I I < amn XmnIIH"
m=m 0 n=n 0  (m,n)EZ

Proof. If < then v < 1. Using Lemma 3.3 and considering the fact that

our field is stationary we have
mn1

II m a X mnl11H! NI1I 2 amnXmnlln.
m=-m n=-00 (mn)CZ2

Using Lemma 3.3 again, together with stationarity of Xmn , and the fact that the

angle between two subspaces is defined symmetrically, we get

axIIH<NiI X aC MII11 1 1 ann - mn. 11 1 I anrmj
m=m0 n=-oo m=-do n=-oo

< N1 I 2 a IMX II1H
(m,n)cZ2

h
Finally, since p < 1 implies ph < 1, applying, Lemma 3.3 two more times, we get

m I  n 1

II 1 1 amnxmnllH N II 1 a xml!H.
mCM 0 nno (m,n)EZZ2

o - -o o . . . o. • - . . . , . - . - o . + . . . . , o . , . . . .
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4Thus, one can choose M = N

To prove the converse we assume that (3.5) holds. Now since M does not

depend on the choice of m0,ml,n0, or n1 and since {a mn} has finitely many

non-vanishing elements, if we let m0 = nO = -, (3.5) becomes as

I a X ]I < M11 I a X mIH
(m,n)ES mn 2m - mH

which in turn implies Px < 1 (by Lemma 3.3). A similar argument shows that
hx

px < 1; yielding p < 1.
x

Next we show that for a stationary random field x the property p < I

is equivalent to the fact that x is a Schauder basis for H . A double
mn x

sequence e is called a Schauder basis for a Hilbert space H if for any element
mm

in H there exists a uniquely determined set of coefficients C n(Z) such that

z = I c M (Z)e T.
m=-cw n=-.

We should mention here that by the convergence of a double series Z Z amn
m=-o n=-o

to a limit we mean that the double sequence of its partial sums converges

to that limit and by the partial sums we mean the rectangular partial sums,

defined by m n
mn I ml n1

m00 m=m 0 n=n0 Mn

Having Lemma 3.4 proved the proof of the following theorem is a standard

Schauder basis argument and,in particular can be given similar to the proof

given on pages 102 and 103 of [6], and hence it is omitted.

3.6 Theorem. A stationary random field X is a Schauder basis for Hx if and

only if pX < 1.

. . . . . ...'. -.-'. ,- --: -. '. ..-- , ..- ...- -. ..,,- -. '- , ..- .-, " ..- .. " .- -: -. -," -. --' '. -: -, --" ,, .- ., .- .:--' ,: .- ,- -, ' " -',;' .,', :- .' ,' -" - ,a.a....w , d ,', ' -, -" " • "-:'-" '-- , :. -".:.."..".."....-..-..-"..-........"..",,
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We are now going to prove the following theorem which generalizes a

well-known fact concerning the positivity of the angle between past and future

for a stationary sequence. (cf. Helson and Szegb [4] and Hunt; Muckenhoupt;

and Wheeden [5] for scalar weight functions and Pousson [12], Pourahmadi [11],

and Miamee 19] for the matrical weight functions.)

3.7 Theorem. Let X be a stationary random field with a spectral measure tiurn

on the torus. P× < I if and only if

(i) W is absolutely continuous with respect to the normalized Lebesgue

measure do = dada with spectral density w,472 ,

2 c L1 2 L2 L 2(ii)L w  L, whereL w = = P

2 2(iii) The Fourier series of any f E L converges to f in the norm of L w

The proof of Theorem 3.7 is established via a series of Lemmas which we

proceed to prove

3.8 Lemma. Let X be a stationary random field. If px < 1, then X ismn i n

horizontaZly, vertically purely non-deterministic, and strongly non-determi-

nistic, that is

n HX ({(m,n): m < p, n c Z}) = {0},
pEZ

n HX({(m,n): m E Z, n < q}) = {0},
qcZ

and

n H%{(m,n): m < p or n < q) = {0}.
p,qEZ

. .' * ..* ""*..d* -"." - '. ... " "".. .". . .. -. .-.- '.. ." ". ." -" ."." ........'.".. ...-..'.-""- '-.-.. . . ..-. .-" . . .7 . ."
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Proof. We just give the proof of first statement. The proof of the other two

statements are similar. Suppose that

Y E n Hx({(m,n):m < k, n E Z))

kEZ

then Y E H x{(m,n): m < k, n E Z}), for all k E Z. It follows from Theorem 3.6

that X is a Schauder basis for HX; hence {Xmn, m < k, n E ZI is a Schauder

basis for Hx({(m,n): m < k, n c Z}) for each k. Thus for each k E Z we have a

representation as follows

k 00
I I mn mn

m=-co n=-co

but since these representations must be unique we conclude that b = 0 for allin

k,m and n. Thus Y = 0, which completes the proof of our lemma.

Using Lemma 3.8 above and Theorem 3.4 of Soltani [15] we arrive at the

following lemma.

3.9 Lemma. Let X be a stationary field with spectral measure v. If x < 1

then v is a.c. with respect to the Lebesgue measure, and its spectral density wL1
has the property log w c L

3.10 Lemma. Suppose X is a stationary random field satisfying px < 1. Thenin

with the notations of Theorem 3.7, we have

2 1Lw c L

Proof. The operator I defined by

1(P) = 00 ad,

on the polynomials P = 2 a e i(mct+na) is bounded because

(m,n)cZ
2 in

•••. . -•o................... .•• °q - .........°.. .-.... ............ . .".• . o ..
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I (P) = w a0 (a,B )diI IJa 0 0 w /w d a

or

11(P) I < Jla 0 012 wdi)l1/2(Jwdi)l112

Hence by Lemma 3.4 and the Kolmogrov isomorphism we get

II(P)l < MIPiI 2rTd.

2
Thus "I" can be extended to a bounded functional on L . Hence there exists aw

function g in L2 such that
w

I(f) = (f,g) 2 Wfor all g
L w"

w

In particular we have

I(ei(ma+n )) = (ei( +nB),g) 2

w

On the other hand

I(ei(Ia+n )) 0, if (m,n) # (0,0)

1, if (m,n) : (0,0)

Thus we have

( ei(na+n ) w(c,)g(a,B)da 0, if (m,n) # (0,0)

1, if (m,n) - (0,0)

- - 2 2 1
which means wg 1. Hence w 1 g E L implying L c L because for any

L2
h e L we havew

f J hdci fhfh 471 doi < (Jjh 2wdi) 1/2 w w 1 dc).

Remark. Recall that a stationary random field xmn is minimal , if and only

if its spectral measure vi is absolutely continuous and, with the notation of

Theorem 3.7, w 1 E L1. (cf. Salehi and Scheidt [13]). Thus the argumentation

in the proof of Lemma 340 shows that the property 0x < I implies that Xmn is

.' " ' , " """ .-. ' : - -'" "-.- """- -. '% '""- -"""": '" - " - """- - """- - - """" - """" . """ "-". - """. .



10

minimal. That is to say

Xn UM H x Qp,q): (p,q) (m,n)).

1' This in particular implies that X is purely non-deterministic in the

Helson-Lowdenslager [ 2] sense. Hence we have

J log wda > -

3.11 Lemma. With the notations of Theorem 3.7, if Px < 1, then the Fourier series

2 2* of any function f in L w converges to it in L.w

Proof. For any fixed non-negative integers m and n, the operator Smn defined

on the polynomials by

m n i(pct+qB)
Stn apqe i ( l ax q a) ) = p - apq e

(p,q)EZ2  p=-m q=-n

is bounded (by Lemma 3.4) with a bound M not depending on m,n; and hence it

can be extended to a bounded operator on Lw, which we will again call Si , mn

with the same bound M. It can be seen that these operators S are just the

symmetric Fourier partial sum operators. Let f c L ,to show

S (f) - f in L2,
mn wS

given E > 0, we take a polynomial P such that

11f - LL2 <M l

We then have

.% %S-

° .' ° ° - ° . ° - .°, •. = ,, , - . . • , • % °-.• •=° o. • o o * °- • .



ItIjtM (f) - fIIL2 < Icsmn -I) (f -P) ItIL I I1M (P) - II
w w w

< flsn I, II hlf - 1L 2 + II -P PHit 2

w w

Thus

tISmm(f) - fit < (M + 1) iir+ ItS (P) - P11.
Mn ~L2 l i

w

Now if we take m and n large enough we get S P =P P, and hence we get

IItS_(f) - fIL2<

w

This completes the proof of the lemma.

Proof of Theorem 3.7. If p x< 1 then Lemmas 3.9, 3.lO,and 3.11 respectively,

* imply that (i), (ii), and (iii) hold.

On the other hand, suppose that (i), (ii), and (iii) holds. Thus any f

2 1
in L wbelongs to L and, as such, has a Fourier series

f 2~ a pqe ip~

(p,q)EZ2  p

* We consider the partial sum operator

Sm 1n 1  L2 L2
M0n0 w w

* defined by

Sm 1n 11 a e~aq)
'0 0 p=-m 0 ql=-n 0  p

For any f e L 2we can write
w



V- 7 .T 7- W. V; T. R

12

m m

Hs'ln(f) I 2 = 1 1 i(pa+qB)1 I0on 0  L2 1a1pq L2

0w p=-m0 q=-n 0  w
m1  n

< I I I I apqI IL 2
p=-m0 q=-n 0  w

Hence m n

tI s m nl (f) 21 = v w d japq1
0"0 L P=-m q=-n p

(2m0m1 + 2n0n1 + 1) v77d lflI 1

2 1
Now since L cL , Miamee [9,Lemma 3.1] implies that there exist a constant K such

w

* that

fIlIl 1 < KilfIl 2
LL

mln
This means that all operators Sm are bounded. On the other hand by (iii)

0r0

2
for each f eL we have

w

S (f) f in L2
mnn ' w

*[ Hence by uniform boundedness principle there exists a constant M such that

"lS H n 1 < M, for all m0 ,ml,n 0 ,n 1 > 0.
0 0

2
This means that for any f e we have

SI sm(f) IL2 _ k2 for all m0 ,ml,n 0 ,n 1 > 0." mno w w

In particular for any polynomial P we have

IISmono(P) 2 <MIIPIL2, for all mo,no,m1 ,n1 > 0.

S.

* * . d ," -"-* --~a'l *-llli ll *l~l -K-*l'l InII - - . ..- -. .- .* .* *. -. "* '. .-..- -- **'*
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But this, up to the Kolmogrov isomorphism, is exactly (3.5). Hence by Lemma

3.4 we deduce that pX < 1.

We conclude this section with an application of the results obtained above

to the prediction theory of stationary random fields. We are going to present

some sufficient condition which guarantees the validity of a commutative

property which has been widely assumed by the authors working on prediction of

stationary random fields, cf. Kallianpur and Mandrekar [7]. (One can also see

Korezlioglu and Loubaton [8], and Miamee [10]). A set of such sufficient

conditions is also given by Soltani [15, Theorem 4.5].

We start with the following lemma.

3.12 Lemma. Let X be a stationary random field with < 1. Then for any

two subsets A and B of lattice points of Z2 we have Hx(AnB) = Hx(A) n HX(B).

Proof. Since p < 1 by Theorem 3.6 the double sequence X forms a Schouder basismn

for HX . Now let Y E Hx(A) n HX(B), then Y E Hx(A) and Y E Hx(B). Hence we

can write

Y a apqXapq and Y= b pqXpq

(p,q)EA (p,q)EB

But by the uniqueness property of representations with respect to Schauder basis Xmn

we must have

Y= a X.

(p,q) EAnB Pq pq

Thus Y c Hx(AnB). This shows that

Hx(A) n Hx(B) c HX(AnB)

The other inclusion being always correct we have proved our lena.

:: " "." .. . . . ...' '.-.*:.c.x'. " * . .. . . . .. ....*. -. .*e* t * *. . . . . . . . . . . .
• .,. ,,. . , , . .. . ' . ,, ',.. ' ,,, ... ,,.,, ... ,'- . .. ,ha,'.,. "- ..' - .,,. ,... ',
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A stationary random field X is said to have the strong commutative

property if

P PsvPsh = PshPsv = PQ,

where for each subspace M, PM denotes the projection on the subspace M.

This is a major assumption in results of Kallianpur and Mandrekar [7]

concerning their four-fold Halmos decomposition and it is nice to find

some spectral characterization for it. Moreover, the next theorem gives some

sufficient condition for the validity of this commutativity condition.

3.13 'Theorem. Let X be a stationary random field with spectral measure -P.

If pX < 1 and the Fourier coefficients of lcg w (which is in L by Lema 3.8 )

are zero outside QU(-Q)U { (0,0). Then X has the strong commutative property.
mn

Proof. The proof follows from Lemma 3.8, Lemma 3.9 and Lemma 3.12 together

with Theorem 2.4 in Miamee [10].

..............

. . . . . . . . . . . . ..
°

. . . . . . .

~~. . . . ................ '.-. ., .. '.....'. . ".- . °.-.. ... ,.....%..,
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4. Analytic Characterization of px < 1. In this section we obtain some

analytic characterizations for the density w whose corresponding stationary

random field Xm has pX < 1. This provides an extension of a well-known

result due to Helson and Szeg6 [4 Theorem]. In our proof we would need the

following lemma which is of independent interest too.

4.1. Lemma. If X is a stationary random field, then pX < 1 if and only if

the angle between H x(UV) and HX(U v ) as well as the angle between HX(U h) and

HX(U h ) are positive, where

Uv = i(m,n): m < -1, n E Z) u {(0,n): n < -11

and

Uh = {(m,n): m E Z, n < -11 u {(M,): m < -10.

If this is the case then the angle between Hx(Q) and Hx(Q) is also positive,

where Q is the third quadrant, namely

Q = {(mn): m < 0, n < 01 - {(0,0)}.

Proof. We break the proof of our lemma into the following steps:

Step #1. The angle between Hx(Uv) and HX(Uv) is positive if and only if there

exists a constant N such that

HI a, nXmnllH < Nil 2 a xIlH
(m,n)eUv  (m,n)EZ2

where {a mnI is any double sequence of scalars with finitely many non-vanishing

elements. This statement can be proved similar to Lemma 3.1.

Step #2. The angle between JHX(U v) and Hx(U v) as well as the angle between

hX(Uh ) and HX( is positive if and only if there exists a constant L such that

- o •~... °. ....................................... ........... • . "° .. ---....
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(4-2 a X < L I I a XI H

(m,n)ER (m,n)eZ 2

where a is any double sequence of scalars with finitely many non-vanishingmn

elements, and the first summation ranges over any generalized rectangle of the form

*(4.3) R=U v n U v nU h n U
m 0 0 m n1  p~qO plql

% where

mn {(r,s): r < rn-i, s E Z)u {(m,s): s < n-l1

K and

h
U ={(r,s): r E Z, s < n-l1 u {(r,n): r < rn-l}.
m,n

*The proof of this step is similar to that of Lemma 3.4, and hence it is again

* omitted.

Step #3. We note that the generalized rectangles contains all the usual

*rectangles thus to complete the proof of the lemma it suffices to show

- that (3.2) implies (4.2). To see this we observe that any region R

*in 4.2, that is any region R of the form (42 can be divided as the disjoint

* union of at most 5 rectangles, say R. i=1,2,3,4,5. Thus we can take the

L in step #2 to be simply SM. In fact for any R of the form in (4.2) or (4.3)

we can write

5
IIa aXII~ ~ I a X~
(m,n)cR il (m,n)ER.i

i=l (m,n)EZ2  nmn'

< S M a nX IIlH.
(M,n)EZ2
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Now we can prove the following generalization of a well-

known analytic characterization for positivity of the angle between past and

future due to Helson and Szeg6 [4].

4.4 Theorem. Let X be a stationary random field with spectral measure V.

In order that px < I it is necessary and sufficient that ji be a.c. with respect

to the Lebesgue measure and its spectral density can be written as

eGv Ghh

w = e GkvI and w = e k hI

with

(i) Gv(aa) and G h(a, ) are bounded real valued functions;
(ii) kV(a,B) and kh(a,B) belong to H7(U v ) and H (Uh ) respectively:

(iii) jarg kVI < '- ana larg khl < .! - F (mod. 2T).

Proof. We know that p < 1 if and only if PX < 1 andph<1. But P<1 if

and only if

= sup I Fd I < I,

where P and F range over all polynomials on U v and Uv , respectively, and have

L1
norm less than 1. Now since log w c L (by Lemma 3.9) we can write

log w = a0 0 + a mne-i(mt+n )

(m,n)EZ 2

taking Dv the corresponding optimal factor

1 -i (m+na)

Dv= e 2O0+ atone

(m,n) EU

we have

w (,) = (Dv, 2 e-i42 t ' B) .
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Hence

Y= sup I (PDv) (FDv) e-  dol,

with P and F as above. By a result due to Helson and Lowdenslager [2,

Theorem 6] these PD's are dense in the unit hall of H2 (UV). Thus

v = sup f khe- idol,

where h and k range over the unit hall of H2 (UV). Now this together with

another theorem due to Helson and Lowdenslager [2, Theorem 4] gives

sup I Jge-iPdol,

where g ranges over the unit ball of H (UV). Hence yv is the norm of the

functional

g - ge- ido

considered over H (UV). Thus we can write

V = o

=X inf lile- AIl,

where A ranges over H.Uv). Thus pX < 1 if and only if y < I and this in

turn is equivalent to the existence of a positive e and a function, say Av,

in H C(U v) such that lAvl > e and jarg AvDvI < E - t (mod.21). Now we can

Gv and kv hdefine as in the one dimensional case. A similar argument for 0X

instead of pv completes the proof.X

Now if we continue the proof of Theorem 4.4 further as in the proof of

corresponding results of Helson and Szegb [4] we arrive at the following

theorem. The proof, being similar except for the details, is omitted.

• . -o °.". o. ,° •. •...-.-.........-.......-...................................,. . .. •. -° . o - ° ° ,.. . -~°
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4.5 Theorem. Let X be a stationary field with spectral measure p. If pX < 1

then we can write Ghh

w=eG +s andw = eG+

where Gv is a bounded real valued function and for each X, sv  is the

conjugate of a real valued function s v with 1 sV1. < I with similar statements

h h h
for G , S , and S

To state our next theorem we need the following definition

4.6 Definition. The vertical conjugate operator Cv and the horizontal conjugate

operator Ch and the quarter-plane conjugate operator CQ are defined for any

f in L1 with

f ~ a00 + a ei (po+qB)

(p,q)#(0,O) pq

by

V = -i(segm p)a pqe+i (pc+qa)cV(f) p

(pq)J(0,0)

ch(f) = I -i(segm q)a pqe i (p a +q6)

(p,q) (O,O)

CQ(f) = -i chcv "

4.7 Theorem. Let X be a stationary field with spectral measure v andmn

spectral density w. (a) In order that px < 1 it is necessary and sufficient

that Cv and Ch be bounded operators on L2 . If this is the case then C

is also bounded.

Proof. Having proved Lemma 3.3 the proof of the first part is as in the case

of one variable. The proof of the last statement follows from the definition

of C



20

REFERENCES

[1] Chiang, Tse-Psi. (1957). On the linear extrapolation of a continuous homo-
geneous random field. Theor. Probab. Appl. 2, 58-88.

[2] Helson, H. and Lowdenslager, D. (1958). Prediciton theory and Fourier series
in several variables, I. Aata. Math. 99, 165-202.

[3] Helson, H. and Lowdenslager, D. (1959). Prediction theory and Fourier series
in several variables. If. Acta. Math. 106, 175-213.

[4] Helson, H. and Szegb, G. (1960). A problem in prediction theory. Ann. Math.
Puru. Appl. 51, 107-138.

15] Hunt, R., Muckenhoupt, B. and Wheeden, R.L. (1973). Weighted norm inequalities
for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc.
176, 227-251.

[6] Lacey, H.E. (1974). The isometric Theory of Classical Banach Spaces,
SDringer-Verlag.

[7] Kallianpur, G. and Mandrekar, V. (1983). Non-deterministic random fields and
Wold and Halmos decompositions for commuting isometries. Prediction Theory
and Harmonic Analysis, The Psi Masani Volume, V. Mandrekar and H. Salehi
(Eds.) North-Holland, Amsterdam.

[8] Korezlioglu, H. and Loubaton, P. Spectral factorization of wide sense stationary
processes on Z2 . (To appear in J. Multivariate Anal.)

[9] Miamee, A.G. On the angle between past and future and prediction theory of
stationary stochastic processes (submitted).

[10] Miamee, A.G., (1984). Extension of three theorems of Fourier series on the
disc to the torus: Technical Report #84, Dept. of Statistics, University of
North Carolina at Chapel Hill.

[11] Pourahmadi, M. A matricial extension of the Helson-Szeg6 theorem and its
application in multivariate prediction. (To appear in J. Multivariate Anal.)

[121 Pousson, H.R. 11968). Syster of toplitz operator on H 2 , I. Trans. Amer.
Math. Soc. 133, 527-536.

[13] Salehi, H. and Sheidt, J.K.(1972). Interpolation of q-variate stationary

stochastic processes over locally compact abelian group. J. Multivariate Anal.
2, 307-331.

[14] Sarason, D.E. (1978). Function theory on the unit circle, Lecture Notes,
Virginia Poly. Inst. and State Univ., Virginia.

[15] Soltani, A.R., (1984). Extrapolation and moving average representation for
stationary random fields and Beurling's theorem.

................ .,.. .. . . ...... ..... .: .. . , ... . .... . . -...-. ','.'. .........- >-..:.



FILMED

11-85

DTIC


